Non-stabilized azomethine ylides in [3+2] cycloadditions. Pyrrolidinylfuranones from (5S)-5-menthyloxy-4-vinylfuran-2(5H)-one

Kai Gerlach, ${ }^{a}$ H. M. R. Hoffmann ${ }^{* a}$ and R. Wartchow ${ }^{b}$
${ }^{\text {a }}$ Department of Organic Chemistry, University of Hannover, Schneiderberg 1 B, 30167 Hannover, Germany. E-mail: hoffmann@mbox.oci.uni-hannover.de; Fax: +49(511)7623011
${ }^{b}$ Department of Inorganic Chemistry, University of Hannover, Callinstr. 9, 30167 Hannover, Germany

Received (in Cambridge) 18th May 1998, Accepted 1st September 1998

Upon sonication with lithium fluoride in acetonitrile N-benzyl- N-methoxymethyl(trimethylsilylmethyl)amines 9a-c undergo chemoselective 1,3-dipolar cycloaddition with 4-vinylfuranones $\mathbf{2}$ and $\mathbf{6}$ to afford pyrrolidinylfuranones $\mathbf{1 0 , 1 1 a - c}$ and 12a-c. The stereochemistry is assigned by X-ray analyses and proton NMR data comparison of related oxiranylfuranone 13.

4-Vinylfuran- $2(5 \mathrm{H})$-ones, which have received little attention hitherto, are well suited for the construction of heteroprostanoids containing a pyrrolidine ring and also other heterocycles, which are attached to an electron-deficient butenolide moiety.

We here describe the synthesis of (5S)-5-menthyloxy-4-vinylfuran- $2(5 \mathrm{H})$-one $\mathbf{6}$. Heterocycle $\mathbf{6}$ was obtained enantiomerically pure and is useful for elucidating the stereochemistry of simple $[2+3]$ and $[2+1]$ cycloadditions to the vinyl group. Carbon C-5 of the furan- $2(5 \mathrm{H})$-one possesses an oxygenated side-chain, as in simple derivatives and metabolites of 4-vinylfuran-2(5H)-one 2.

Results

The synthesis of (5 S)-5-menthyloxy-4-vinylfuran-2(5H)-one 6 is described in Scheme 1. We had earlier reported the direct

i) (-)-Menthol,

DCM, Dean-
Stark separator, $\xrightarrow{ }$
ii) resolution

3

Scheme 1 Synthesis of the dipolarophiles.
transacetalization of 4-bromo-5-methoxyfuran-2(5H)-one 3 with various alcohols in the melt. ${ }^{1}$ We now find that it is preferable to carry out this conversion in two steps. Under forcing conditions ($30 \% \mathrm{H}_{2} \mathrm{SO}_{4}$) methoxy acetal $\mathbf{3}$ was first of all converted into hemiacetal $\mathbf{4}$ in quantitative yield. ${ }^{2}$ The subsequent acetalization $(\mathbf{4} \longrightarrow \mathbf{5})$ proceeded in much milder conditions, i.e. refluxing DCM with removal of the water liberated. In contrast, refluxing 4 in toluene under acid catalysis (PTSA) caused

Fig. 1 X-Ray structure of (5S)-4-bromo-5-menthyloxyfuran-2(5H)one 5.
a severe drop in yield. ${ }^{3}$ We obtained the epimers of $\mathbf{5}$ in a ratio of $(5 S)-5:(5 R)-\mathbf{5}=1.25: 1$. MM2 calculations suggest that the major (5 S)-4-bromo-5-menthyloxyfuran-2(5H)-one $\mathbf{5}$ is more stable (by ca. $2 \mathrm{kcal} \mathrm{mol}^{-1}$) than its diastereomer. ${ }^{4} \mathrm{~A}$ simple recrystallization from petroleum ether-diethyl ether mixtures furnished enantiomerically pure ($5 S$)-4-bromo-5-menthyloxyfuran- $2(5 \mathrm{H})$-one 5 , the structure of which was determined by X-ray crystal diffraction (Fig. 1). ${ }^{5}$ The diastereomer of 5 (with respect to carbon C-5) was recycled to 4 -bromo-5-hydroxyfuran-2(5 H)-one $\mathbf{4}$ by acidic hydrolysis.
Stille reaction with tributylvinylstannane gave cross-coupled $\mathbf{6}$ in good yield (82%). Similarly 4-vinylfuran-2(5H)-one 2 was prepared readily from tetronic acid bromide $\mathbf{1}$ (yield 85%), no doubt due to the activation of the carbon-bromine bond by the vinylogous lactone carbonyl group.
The synthesis of the azomethine ylide precursors 9a-c required two steps. Benzylamines $7 \mathbf{a - c}$ were treated with trimethylsilylmethyl chloride using potassium carbonate in refluxing acetonitrile to give the α-aminosilanes $\mathbf{8 a - c}$ in good yield (Scheme 2). Subsequent reaction with methanolic 40% aqueous formaldehyde afforded the tertiary amines $\mathbf{9 a - c}$ in satisfactory yield and set the stage for the fluoride mediated 1,3-dipolar cycloadditions. ${ }^{6,7}$

Parent vinylfuranone 2 was converted into pyrrolidinyl-

Table 1 Reaction of vinylfuranone 6 with amines 9 a-c

Entry	Dipole precursor		Conditions	Products$11 / 12$	Yield(\%)	$\begin{aligned} & \text { ratio } \\ & \mathbf{1 1 : 1 2} \end{aligned}$
	9	R				
1	b	(R)-Me	$-40^{\circ} \mathrm{C}, \mathrm{MeCN} / \mathrm{THF}$	b	55	2:1
2	c	(S)-Me	$-40^{\circ} \mathrm{C}, \mathrm{MeCN} / \mathrm{THF}$	c	39	2.92:1
3	a	H	$0^{\circ} \mathrm{C}$, sonication, 8 h	a	73	2.5:1
4	b	(R)-Me	$0^{\circ} \mathrm{C}$, sonication, 8 h	b	88	2:1
5	b	(R)-Me	$0^{\circ} \mathrm{C}$, sonication, cat. Eu(fod) $3,8 \mathrm{~h}$	b	74	2.45:1
6	c	(S)-Me	$0^{\circ} \mathrm{C}$, sonication, 8 h	c	69	3.2:1

 $7 \mathbf{a - c}$									
		9a-c							
	7				R	8	Yield (\%)	9	Yield (\%)
1	a	H	a	80	a	55			
2	b	(R)-Me	b	81	b	64			
3	c	(S)-Me	c	75	c	69			

Scheme 2 Synthesis of azomethine ylide precursors. Reagents and conditions: (i) $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 4 d ; (ii) $\mathrm{CH}_{2} \mathrm{O}_{\text {(aq.) }}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.
furanone $\mathbf{1 0}$ by cycloaddition of the azomethine ylide generated in situ from $9 \mathbf{a}$ using lithium fluoride (Scheme 3). This test reac-

Scheme 3
tion showed that it was possible to combine the electron-rich amine with the oxacyclic Michael acceptor. We were pleased to find that menthyloxy derivative 6 reacted similarly (Scheme 4). Cycloaddition occurred exclusively at the more accessible terminal olefinic bond. The more hindered C3-C4 double bond, although potentially more electron-deficient, was not attacked. ${ }^{8}$

Because of the poor solubility of lithium fluoride in acetonitrile, sonication at $0^{\circ} \mathrm{C}$ (bp of acetonitrile $81^{\circ} \mathrm{C}$) was helpful. ${ }^{9}$ This also applied to the reactions with enantiopure vinylfuranone 6, which were carried out without sonication at $-40^{\circ} \mathrm{C}$ in mixed solvent (acetonitrile-THF) and again with sonication at $0{ }^{\circ} \mathrm{C}$ (Table 1). Lowering the temperature to $-40^{\circ} \mathrm{C}$ had no noticeable effect on the diastereoselectivity of the cycloaddition, while addition of the mild Lewis acid $\mathrm{Eu}(\mathrm{fod})_{3}$ changed the diastereoselectivity slightly (from $2: 1$ to $2.45: 1){ }^{10}$ Reaction of ($1 S$)- N-phenylethyl $-N$-methoxymethyl(trimethylsilylmethyl)amine 9c with vinylfuranone 6 gave the best diastereomeric ratio (Entry 6) possibly as a consequence of double asymmetric induction. ${ }^{11}$

The diasteromeric pyrrolidinylfuranones were separated by medium pressure liquid chromatography.

The stereochemistry of pyrrolidinylfuranones 11a-c and 12a-c could not easily be determined by common NMR spectroscopic methods. Investigation of the diastereomeric mixtures by proton spectroscopy showed two sets of protons H-3 and $\mathrm{H}-5$, with characteristic chemical shift differences and characteristic relative positions in each case ($c f$. Fig. 2, spectrum C).

11 a-c
$12 \mathrm{a}-\mathrm{c}$

Scheme 4 Syntheses of pyrrolidinylfuranones.
The position and multiplicity of the new tertiary proton gave no satisfactory stereochemical information.

However, epoxidation of (5S)-5-menthyloxy-4-vinylfuran$2(5 \mathrm{H})$-one $\mathbf{6}$ with dimethyldioxirane in acetone furnished the crystalline diastereomeric epoxides 13 and 14 under mild conditions (69% yield, 71% diastereoselectivity, Scheme 5). ${ }^{12}$

Scheme 5 Epoxidation of vinylfuranone 6
Major oxiranylfuranone $\mathbf{1 3}$ was separated and purified twice by recrystallization. X-Ray crystallography ${ }^{5}$ (Fig. 3) showed the configuration of the new chiral centre to be S.
The relative positions of the furanone ${ }^{1} \mathrm{H}$ absorptions of epoxides $\mathbf{1 3}$ and $\mathbf{1 4}$ were similar to those of the diastereomeric pyrrolidinylfuranones 11c and 12c ($c f$. spectra A, B and C). Thus it appears that the relative and also absolute configuration of the title heterocycles 11a-c and 12a-c can be determined by

Fig. 2
simply comparing the proton NMR data with those of oxiranylfuranones 13 and 14.

Conclusion

We have prepared novel bicyclic conjugates by combining protected and electron-rich pyrrolidines with an oxacyclic Michael acceptor by a σ-bond at carbon atoms $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-4$, respectively. These conjugates are potential heteroprostanoids and are of interest as low molecular weight bioregulators.

Fig. 3 X-Ray structure of (5S)-5-menthyloxy-4-[(2S)-oxiran-2-yl]-furan-2(5H)-one 13.

Experimental

General

Melting points were determined on a Büchi apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1710 infrared spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WH 90, AM 200 and AM 400 spectrometer in deuterated chloroform unless otherwise stated, with tetramethylsilane as internal standard. Coupling constants, J, are given in Hz . Mass spectra were recorded on a Finnigan MAT312 (70 eV) or a VG Autospec spectrometer. Microanalyses were performed in the Department of Organic Chemistry of the University of Hannover. Preparative column chromatography was performed on J. T. Baker silica gel (particle size $30-60 \mathrm{~mm}$). Analytical TLC was carried out on aluminum-backed 0.2 mm silica gel $60 \mathrm{~F}_{254}$ plates (E. Merck).
Preparation of 4 -bromofuran- $2(5 H)$-one 1 , 4 -vinylfuran$2(5 \mathrm{H})$-one 2 and 4-bromo-5-methoxyfuran- $2(5 \mathrm{H})$-one $\mathbf{3}$ was described previously. ${ }^{1}$

4-Bromo-5-hydroxyfuran-2(5H)-one 4 and (5S)-4-bromo-5-

 menthyloxyfuran-2(5H)-one 54-Bromo-5-methoxyfuran-2 $(5 H)$-one $3(1.93 \mathrm{~g}, 10 \mathrm{mmol})$ was heated at reflux for 1 h in 30% aqueous sulfuric acid ($60 \mathrm{~cm}^{3}$). The mixture was poured onto ice and extracted with diethyl ether $(3 \times)$. The combined organic layers were freed from solvent to give 4 -bromo-5-hydroxyfuran- $2(5 H)$-one 4 as a yellow oil, which was transferred as a solution in DCM (30 cm $\left.{ }^{3}\right)$ into a two-necked flask equipped with a Dean-Stark separator. (-)Menthol ($2.5 \mathrm{~g}, 1.6$ eq.) was added and the mixture was refluxed for one week. Evaporation of the solvent and column chromatography (silica gel, petroleum ether-diethyl ether $10: 1$) afforded 4-bromo-5-menthyloxyfuran-2(5 H$)$-one as a mixture of epimers (white crystals, $2.54 \mathrm{~g}, 8 \mathrm{mmol}, 80 \%$, ratio ($5 S$)-5/ $(5 R)-5=1.25: 1)$. Recrystallization from petroleum ether (bp $40-60{ }^{\circ} \mathrm{C}$)-diethyl ether furnished enantiopure ($5 S$)-4-bromo-5-menthyloxyfuran-2(5H)-one 5.

4-Bromo-5-hydroxyfuran-2(5H)-one 4

Crystallization of the crude viscous product from acetone gave white crystals, $\mathrm{mp} 71^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3305,3115,1717$, 1610, 1440, 1333, 1297, 1257, 1184, 1136, 1037, 956, 859, 843, $717 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3584,3120,3040,1796,1768,1612$, $1420,1320,1248,1120,1032,960,892,864,840 ; \delta_{\mathrm{H}}(80 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.18\left(\mathrm{~s}, \mathrm{Me}_{2} \mathrm{CO}\right.$, solvated), $4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $6.06(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.40(1 \mathrm{H}, \mathrm{d}, J 0.5, \mathrm{H}-3) ; \delta_{\mathrm{C}}(50 \mathrm{MHz} ; \mathrm{APT}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 31.00\left(-, \mathrm{Me}_{2} \mathrm{CO}\right.$, solvated), 99.66 (- , C-5),
123.91 (- , C-3), $148.32(+, \mathrm{C}-4), 169.62(+, \mathrm{C}-2), 211.10(+$, $\mathrm{Me}_{2} C \mathrm{O}$, solvated); $m / z 181 / 179\left(\mathrm{M}^{+}+1,1 \% / 8 \%\right), 180 / 178\left(\mathrm{M}^{+}\right.$, 19/23), 163/161 (6/7), 152/150 (8/9), 135/133 (7/8), 134/132 (95/ 100), 124/122 (3/3), 107/105 (13/14), 106/104 (25/26), 99 (29), 73 (8), 71 (6).

(5S)-4-Bromo-5-menthyloxyfuran-2(5H)-one 5

$\mathrm{Mp} 132{ }^{\circ} \mathrm{C} ;[\alpha]_{20}^{\mathrm{D}}+26.6\left(c 1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 0.75-1.75$ ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-m e n t h y l$), $2.20-2.48$ ($2 \mathrm{H}, \mathrm{m}$, H-menthyl), 3.55 ($1 \mathrm{H}, \mathrm{dt}, J 10 / 4$, H-menthyloxy), 5.79 ($1 \mathrm{H}, \mathrm{d}$, $J 1, \mathrm{H}-5), 6.38(1 \mathrm{H}, \mathrm{d}, J 1, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{APT} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) 15.83 (- , C-menthyl), 20.88 (- , C-menthyl), 22.11 (- , C-menthyl), 22.87 (+ , C-menthyl), 25.15 (- , C-menthyl), 31.44 (- , C-menthyl), 34.10 (+, C-menthyl), 42.10 (+ , C-menthyl), 48.04 (- , C-menthyl), 84.02 (- , C-menthyl), 104.84 (- , C-5), $124.15(-, \mathrm{C}-3), 146.15(+, \mathrm{C}-4), 168.00(+, \mathrm{C}-2)$ (Found: C, 53.04; $\mathrm{H}, 6.7 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrO}_{3}$ requires C, $53.15 ; \mathrm{H}, 6.7 \%$); IR, MS and HRMS data are consistent with those reported in the literature. ${ }^{1}$

X-Ray structure determination of compound 5

$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrO}_{3}, M=317.22$, monoclinic, space group $P 2_{1}$ (No. 4), $a=8.292(1), b=6.455(1), c=14.465(2) \AA, a=90, \beta=104.08(1)$, $\gamma=90^{\circ}, V=751.0(2) \AA^{3}, Z=2, D_{\mathrm{c}}=1.403 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=328$, crystal size $0.10 \times 0.81 \times 0.06 \mathrm{~mm}, T=300 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=$ $27.4 \mathrm{~cm}^{-1}$. Data collection: diffractometer Stoe IPDS (Imaging Plate), graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation (fine-focus sealed tube, $\lambda=0.71073 \AA$), 2θ range $=5.0-48.2^{\circ}$, data set h, k, $l-9: 9 ;-7: 7 ;-16: 16$, total data 5435 , unique data 2273 , observed data 1868 with $I>2 \sigma(I), R_{\text {int }}=0.032$. Structure solution by SHELXS- $86{ }^{13}$ and refinement by SHELXL-93, ${ }^{14}$ hydrogen atoms in geometrically calculated positions, $\Delta \rho_{\max }=0.24$ e $\AA^{-3}, \Delta \rho_{\text {min }}=-0.25$ e $\AA^{-3}, R\left(F^{1}\right)=0.025$ based on 1868 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right), w R 2=0.038, w R 2$ based on F^{2} of 2273 reflections, Flack \times parameter $-0.00(1)$.

Minor diastereomer of 5

$\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.75-1.75$ ($16 \mathrm{H}, \mathrm{m}$, H-menthyl), 2.06-2.26 ($2 \mathrm{H}, \mathrm{m}$, H-menthyl), $3.65(1 \mathrm{H}, \mathrm{dt}, J$ 10/4, H-menthyloxy), $5.88(1 \mathrm{H}, \mathrm{d}, J 1, \mathrm{H}-5), 6.37(1 \mathrm{H}, \mathrm{d}, J 1, \mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{APT} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.68$ (- , C-menthyl), 20.83 (- , C-menthyl), 21.18 (- , C-menthyl), 23.03 (+ , C-menthyl), 25.15 (- , C-menthyl), 31.55 (- , C-menthyl), 34.03 (+, C-menthyl), 40.30 (+ , C-menthyl), 47.53 (- , C-menthyl), 80.50 (- , C-menthyl), 101.73 (-, C-5), 124.24 (- , C-3), $145.86(+$, C-4), 168.07 (+, C-2); IR, MS, HRMS data are consistent with those reported in the literature. ${ }^{1}$

(5S)-5-Menthyloxy-4-vinylfuran-2(5H)-one 6

A solution of (5S)-4-bromo-5-menthyloxyfuran-2($5 H$)-one 5 $(3.17 \mathrm{~g}, 10 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}(350 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ and acetonitrile $\left(1 \mathrm{~cm}^{3}\right)$ under argon atmosphere. After stirring for 15 min at r.t. tributylvinylstannane $\left(3.01 \mathrm{~cm}^{3}, 1.05 \mathrm{eq}\right.$.) was added. The mixture was then stirred for two days at $35^{\circ} \mathrm{C}$. Evaporation of the solvent and column chromatography (silica gel, petroleum ether-diethyl ether $5: 1$) afforded (5S)-5-menthyloxy-4-vinylfuran- $2(5 H)$-one 6 as white crystals $(2.16 \mathrm{~g}$, $8.17 \mathrm{mmol}, 82 \%$), $\mathrm{mp} 89^{\circ} \mathrm{C} ;[\alpha]_{20}^{\mathrm{D}}+37.03$ (c 1.045 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.75-1.17(12 \mathrm{H}, \mathrm{m}$, H-menthyl $)$, 1.29-1.49 (2 H, m, H-menthyl), 1.63-1.72 (2 H, m, H-menthyl), 2.15-2.26 (1 H, m, H-menthyl), 2.30-2.38 (1 H, m, H-menthyl), $3.60(1 \mathrm{H}, \mathrm{dt}, J$ 10.48/4.41, H-menthyloxy), $5.69(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.03, \mathrm{H}-2^{\prime}\right), 5.81\left(1 \mathrm{H}, \mathrm{d}, J 17.83, \mathrm{H}-2^{\prime}\right), 6.02$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-5), 6.55\left(1 \mathrm{H}, \mathrm{dd}, J 17.83 / 11.03, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; APT; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 15.61 (- , C-menthyl), 20.92 (- , C-menthyl), 22.03 (- , C-menthyl), 22.60 (+ , C-menthyl), 24.96 (- , C-menthyl), 31.49 (- , C-menthyl), 33.88 (+ , C-menthyl), 42.29 (+ , C-menthyl), 48.00 (- , C-menthyl), 82.33 (- ,

C-menthyloxy), 102.93 (-, C-5), 117.86 (- , C-3), 125.11 (+, $\left.\mathrm{C}-2^{\prime}\right), 126.94\left(-, \mathrm{C}-1^{\prime}\right), 160.05$ (+, C-4), 170.52 (+, C-2) (Found: C, 68.6; H, 4.1. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, 68.57 ; H, 4.03\%); IR, MS and HRMS data are consistent with those reported in the literature. ${ }^{1}$

General procedure for the synthesis of N-(trimethylsilylmethyl)benzylamines 8a-c

Benzylamine (1.5 eq.) 7a-c was added to a suspension of anhydrous potassium carbonate ($2.1 \mathrm{~g}, 0.5 \mathrm{eq}$.) in acetonitrile $\left(60 \mathrm{~cm}^{3}\right)$. After stirring for 15 min at r.t. trimethylsilylmethyl chloride ($4.2 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$) was added over a period of 20 min . After being refluxed (4 d) the mixture was freed from solvent and purified by column filtration (silica gel, petroleum etherdiethyl ether 3:1) to give the monoalkylated products $\mathbf{8 a - c}$.

N-(Benzyl)trimethylsilylmethylamine 8a

The synthesis was performed according to the general procedure for the synthesis of N-(trimethylsilylmethyl)benzylamines to furnish a slightly yellow liquid $(4.63 \mathrm{~g}, 24 \mathrm{mmol}$, 80%). The spectroscopic data are consistent with those reported in the literature. ${ }^{6}$
(1R)-N-(1-Phenylethyl)trimethylsilylmethylamine $\mathbf{8 b}$. The synthesis was performed according to the general procedure for the synthesis of N-(trimethylsilylmethyl)benzylamines to give a colourless liquid ($5.05 \mathrm{~g}, 24.4 \mathrm{mmol}, 81 \%$); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.00\left(9 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{d}, J 6.62, \mathrm{Me}), 1.84$ $\left(1 \mathrm{H}, \mathrm{d}, J 13.61, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 1.92\left(1 \mathrm{H}, \mathrm{d}, J 13.42, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$, 3.63 ($1 \mathrm{H}, \mathrm{q}, J 6.62$, PhCHMe$), 7.13-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100$ MHz ; DEPT; $\left.\mathrm{CDCl}_{3}\right)$-2.66 $\left(\mathrm{CH}_{3}, \mathrm{SiMe}_{3}\right), 24.38\left(\mathrm{CH}_{3}, \mathrm{Me}\right)$, $37.90\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$, $62.11(\mathrm{CH}, \mathrm{PhCHMe}), 126.61(\mathrm{CH}$, $\mathrm{Ph}), 126.71(\mathrm{CH}, \mathrm{Ph}), 128.25(\mathrm{CH}, \mathrm{Ph}), 146.08(\mathrm{C}, \mathrm{Ph})$.

(1S)-N-(1-Phenylethyl)trimethylsilylmethylamine 8c

The synthesis was performed according to the general procedure for the synthesis of N-(trimethylsilylmethyl)benzylamines to furnish a slightly yellow liquid $(4.65 \mathrm{~g}, 22.4 \mathrm{mmol}$, $75 \%) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3}\right)-2.67\left(\mathrm{CH}_{3}, \mathrm{SiMe}_{3}\right), 24.38$ $\left(\mathrm{CH}_{3}, \mathrm{Me}\right), 37.89\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 62.11(\mathrm{CH}, \mathrm{PhCHMe})$, $126.61(\mathrm{CH}, \mathrm{Ph}), 126.70(\mathrm{CH}, \mathrm{Ph}), 128.25(\mathrm{CH}, \mathrm{Ph}), 146.06(\mathrm{C}$, $\mathrm{Ph})$; the proton NMR data are consistent with those reported in the literature. ${ }^{7}$

N-Benzyl- N-methoxymethyl(trimethylsilylmethyl)amine 9a

The synthesis was performed according to the literature. ${ }^{6}$ Kugelrohr distillation (0.05 torr, bp $105^{\circ} \mathrm{C}$) gave a colourless liquid, yield 55%. Identified by spectral comparison.

(1R)-N-1-Phenylethyl- N-methoxymethyl(trimethylsilylmethyl)-

 amine 9bThe synthesis was performed according to the literature. ${ }^{7}$ Kugelrohr distillation (0.05 torr, bp $115^{\circ} \mathrm{C}$) gave a colourless liquid, yield $64 \% ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3}\right)-1.43\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SiMe}_{3}\right), 19.21\left(\mathrm{CH}_{3}, \mathrm{Me}\right), 39.84\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 54.56\left(\mathrm{CH}_{3}\right.$, $\mathrm{OMe}), 61.77(\mathrm{CH}, \mathrm{PhCHMe}), 85.82\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OMe}\right), 126.54$ (CH, Ph), $127.45(\mathrm{CH}, \mathrm{Ph}), 128.00(\mathrm{CH}, \mathrm{Ph}), 145.23(\mathrm{C}, \mathrm{Ph}) ;$ identified by spectral comparison.

(1S)-N-1-Phenylethyl- N-methoxymethyl(trimethylsilylmethyl)amine 9c

The synthesis was performed according to the literature. ${ }^{7}$ Kugelrohr distillation (0.05 torr, bp $115^{\circ} \mathrm{C}$) gave a colourless liquid, yield 69%. $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$; DEPT; $\left.\mathrm{CDCl}_{3}\right)-1.44\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SiMe}_{3}\right), 19.21\left(\mathrm{CH}_{3}, \mathrm{Me}\right), 39.82\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 54.54\left(\mathrm{CH}_{3}\right.$, OMe), $61.77(\mathrm{CH}, \mathrm{PhCHMe}), 85.80\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OMe}\right), 126.53$ (CH, Ph), 127.43 ($\mathrm{CH}, \mathrm{Ph}), 128.00(\mathrm{CH}, \mathrm{Ph}), 145.22(\mathrm{C}, \mathrm{Ph})$; identified by spectral comparison of $(1 R)$-enantiomer $9 \mathbf{~ b}$.

General procedure for the 1,3-dipolar cycloaddition

A flask containing 4-vinylfuranone $\mathbf{2}$ or $\mathbf{6}(1 \mathrm{mmol})$ and lithium fluoride ($60 \mathrm{mg}, 2.3$ eq.) was evacuated and flushed several times with argon. A solution of N-benzyl- N-methoxymethyl(trimethylsilylmethyl)amine $9 \mathbf{a - c}$ (1.1 eq.) in acetonitrile (2.5 cm^{3}) was added at $0^{\circ} \mathrm{C}$. Then the mixture was sonicated for 8 h and stirred at $-40^{\circ} \mathrm{C}$ (addition of THF $\left(1 \mathrm{~cm}^{3}\right)$ was necessary to maintain a liquid suspension) for several days. The reaction mixture was poured into water and extracted with diethyl ether $(3 \times)$. The combined organic layers were dried over MgSO_{4} and concentrated on a rotary evaporator. The pyrrolidinylfuranones were obtained after column chromatography.

4-(N -Benzylpyrrolidin-3-yl)furan-2(5H)-one 10. 4-Vinyl-furan-2 $(5 H)$-one $2(110 \mathrm{mg}, 1 \mathrm{mmol})$ was treated with N-benzylN -methoxymethyl(trimethylsilylmethyl)amine 9 a following the general procedure for the 1,3-dipolar cycloaddition to furnish pyrrolidinylfuranone $\mathbf{1 0}$ after chromatography (silica gel, gradient diethyl ether \longrightarrow diethyl ether- $\mathrm{MeOH} 10: 1$) as a yellowish viscous oil ($163 \mathrm{mg}, 0.670 \mathrm{mmol}, 67 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 2960,2928,2800,1784,1748,1636,1452,1348,1144$, $1032,892,856 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.65-1.84(1 \mathrm{H}, \mathrm{m}$, H-4'), 2.10-2.32 (1 H, m, H-4'), 2.45-2.61 (2 H, m, H-5'), 2.632.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 3.10-3.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 3.56 ($1 \mathrm{H}, \mathrm{d}$, $\left.J 13, \mathrm{PhCH}_{2}\right), 3.66\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{PhCH}_{2}\right), 4.75(2 \mathrm{H}, \mathrm{d}, J 1.6$, $\mathrm{H}-5)$, 5.79 (1 H , dt, $J 1.6 / 1, \mathrm{H}-3$), $7.21-7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{APT} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 29.93\left(+, \mathrm{C}-4^{\prime}\right), 36.98(-$, C-3'), $53.13\left(+, \mathrm{C}^{\prime} 5^{\prime}\right), 58.11\left(+, \mathrm{C}-2^{\prime}\right), 59.70\left(+, \mathrm{PhCH}_{2}\right), 71.91$ $(+, \mathrm{C}-5), 114.12(-, \mathrm{C}-3), 127.09(-, \mathrm{Ph}), 128.31(-, \mathrm{Ph})$, $128.53(-, \mathrm{Ph}), 138.69(+, \mathrm{Ph}), 173.50(+, \mathrm{C}-4), 173.93$ $(+, \mathrm{C}-2) ; m / z 244\left(\mathrm{M}^{+}+1,5 \%\right), 243\left(\mathrm{M}^{+}, 28\right), 166(6), 152(4)$, 149 (4), 134 (6), 133 (24), 132 (11), 93 (10), 92 (13), 91 (100), 77 (6), 65 (18); $m / z\left(\mathrm{M}^{+}\right)$found $243.1258 ; \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires 243.1259.

(5S)-4-(N -Benzylpyrrolidin-3-yl)-5-menthyloxyfuran-2(5H)-

one 11a/12a. (5S)-5-Menthyloxy-4-vinylfuran-2(5H)-one 6 (222 $\mathrm{mg}, 0.840 \mathrm{mmol}$) was treated with N-benzyl- N-methoxymethyl(trimethylsilylmethyl)amine 9a following the general procedure for the 1,3-dipolar cycloaddition to furnish pyrrolidinylfuranones 11a and 12a after chromatography (silica gel, diethyl ether-petroleum ether $1: 1$) as yellowish viscous oils (244 mg , $0.614 \mathrm{mmol}, 73 \%$, de 33%).
(5S)-4-[(3R)-N-Benzylpyrrolidin-3-yl]-5-menthyloxyfuran-2(5H)-one 11a. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2960, 2924, 2872, 2800, $1793,1756,1648,1452,1368,1332,1256,1240,1128,952,904 ;$ $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.63-1.50(14 \mathrm{H}, \mathrm{m}, \mathrm{H}-m e n t h y l)$, 1.57-1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl), 1.82-2.02 (1 H, m, H-4'), 2.03$2.42(2+1 \mathrm{H}, \mathrm{m}$, H-menthyl and H-4'), 2.56-2.91 (4 H, H-2' and H-5'), 3.02-3.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 3.27-3.54 ($1 \mathrm{H}, \mathrm{m}$, H-menthyloxy), $3.60\left(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{PhCH}_{2}\right), 3.78(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.4, \mathrm{PhCH}_{2}\right), 5.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.90(1 \mathrm{H}, \mathrm{t}, J 1, \mathrm{H}-3)$, 7.20-7.41 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{DEPT} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $15.57\left(\mathrm{CH}_{3}\right.$, C-menthyl), $21.02\left(\mathrm{CH}_{3}, \mathrm{C}-\right.$ menthyl $), 22.10\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.67\left(\mathrm{CH}_{2}\right.$, C-menthyl), $25.29(\mathrm{CH}, \mathrm{C}$-menthyl), $29.30\left(\mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right), 31.63(\mathrm{CH}, \mathrm{C}-m e n t h y), 34.01\left(\mathrm{CH}_{2}\right.$, C-menthyl), $36.27\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 42.39\left(\mathrm{CH}_{2}\right.$, C-menthyl), 48.15 $(\mathrm{CH}, \mathrm{C}-m e n t h y l), 53.29\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 58.25\left(\mathrm{CH}_{2}, \mathrm{C}-2^{\prime}\right), 60.04$ $\left(\mathrm{CH}_{2}, \mathrm{PhCH}_{2}\right), 83.33(\mathrm{CH}, \mathrm{C}-$ menthyl $), 104.63(\mathrm{CH}, \mathrm{C}-5)$, $116.91(\mathrm{CH}, \mathrm{C}-3), 127.16(\mathrm{CH}, \mathrm{Ph}), 128.36(\mathrm{CH}, \mathrm{Ph}), 128.62$ (CH, Ph), 138.58 (C, C-4), 170.29 (C, C-Ph), 170.87 (C, C-2); $m / z\left(110{ }^{\circ} \mathrm{C}\right) 397\left(\mathrm{M}^{+}, 2 \%\right), 396$ (1), 313 (4), 269 (3), 259 (18), 258 (88), 242 (9), 241 (19), 213 (14), 168 (8), 150 (6), 133 (18), 105 (2), 91 (100), 83 (13), 69 (10); $m / z\left(\mathrm{M}-\mathrm{H}^{+}\right)$found $396.2539 ; \mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{3}-1$ requires 396.2545 .
(5S)-4-[(3S)-N-Benzylpyrrolidin-3-yl]-5-menthyloxyfuran-2(5H)-one 12a. $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2960,2924,2872,2800$, 1793, 1756, 1648, 1452, 1368, 1332, 1256, 1240, 1128, 952, 904; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.63-1.50(14 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl), 1.57-1.72 (2 H, m, H-menthyl), 1.72-1.98 (1 H, m, H-4'), 2.03-
2.42 ($2+1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{menthyl}$ and $\mathrm{H}-4^{\prime}$), 2.56-2.91 (4 H, m, $\mathrm{H}-2^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right), 3.02-3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.27-3.54(1 \mathrm{H}, \mathrm{m}$, H-menthyloxy), $3.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 5.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.83$ ($1 \mathrm{H}, \mathrm{t}, J 1, \mathrm{H}-3), 7.20-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz} ; \mathrm{APT}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.71$ (- , C-menthyl), 21.01 (- , C-menthyl), 22.13 (- , C-menthyl), 22.64 (,+ C-menthyl), 25.31 (,-C-menthyl), 29.84 (,+ C-4'), 31.55 (- , C-menthyl), $34.02(+$, C-menthyl), 35.85 (-, C-3'), 48.13 (- , C-menthyl), 53.35 (+ , $\left.\mathrm{C}-5^{\prime}\right), 57.91\left(+, \mathrm{C}-2^{\prime}\right), 59.96\left(+, \mathrm{PhCH}_{2}\right), 83.16(-, \mathrm{C}-m e n t h y l)$, 104.48 (- , C-5), 116.29 (,$- \mathrm{C}-3$), 127.08 (- Ph), 128.29 ($\mathrm{Ph}), 128.58(-, \mathrm{Ph}), 138.59(+, \mathrm{Ph}), 170.44(+, \mathrm{C}-4), 170.74(+$, C-2); MS and HRMS: see ($3 R$)-isomer.
(5S)-4-\{(3R and $3 S)-N-[(1 R)-1-P h e n y l e t h y l] p y r r o l i d i n-3-y l\}-$ 5-menthyloxyfuran-2(5H)-one 11b/12b. (5S)-5-Menthyloxy-4-vinylfuran- $2(5 \mathrm{H})$-one $6(200 \mathrm{mg}, 0.757 \mathrm{mmol})$ was treated with (1R)-N-1-phenylethyl- N-methoxymethyl(trimethylsilylmethyl)amine $9 \mathbf{b}$ following the general procedure for the 1,3-dipolar cycloaddition to furnish pyrrolidinylfuranones 11b and 12b after chromatography (silica gel, diethyl ether-petroleum ether $1: 2$) as yellowish viscous oils ($276 \mathrm{mg}, 0.671 \mathrm{mmol}, 88 \%$, de 25%).
(5S)-\{(3R)-N-[(1R)-1-Phenylethyl]pyrrolidin-3-yl\}-5-menthyloxyfuran-2(5H)-one 11b. $[\alpha]_{20}^{\mathrm{D}}+25.27$ (c 1.076 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2960,2920,2872,2796,2360,2340$, $1760,1648,1452,1376,1328,1228,1128,1096,1048,952$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.64-1.68(16 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl $)$, 1.37 ($3 \mathrm{H}, \mathrm{d}, J 6.62$, PhCHMe), 1.81-1.93 (1 H, m, H-4'), 2.062.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl and H-4'), 2.04-2.31 (1 H, m, H-menthyl), 2.34 (1 H , dd, J 9.19/6.25, H-5'), 2.46-2.54 (1 H, m, H-5'), 2.69-2.77 (1 H, m, H-2'), 2.76-2.85 (1 H, m, H-2'), 3.02-3.12 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.24$ ($1 \mathrm{H}, \mathrm{q}, J 6.62$, PhCHMe), 3.41 ($1 \mathrm{H}, \mathrm{dt}, J 10.66 / 4.23$, H-menthyloxy), $5.65(1 \mathrm{H}, \mathrm{d}, J 0.56$, H-5), 5.88 ($1 \mathrm{H}, \mathrm{dd}, J 1.47 / 0.92, \mathrm{H}-3$), 7.19-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.55\left(\mathrm{CH}_{3}, \mathrm{C}\right.$-menthyl $)$, $21.00\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.04\left(\mathrm{CH}_{3}\right.$, C-menthyl), 22.64 $\left(\mathrm{CH}_{2}, \mathrm{C}\right.$-menthyl), $22.76\left(\mathrm{CH}_{3}, \mathrm{PhCHMe}\right), 25.21(\mathrm{CH}, \mathrm{C}-$ menthyl), $29.38\left(\mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right), 31.56(\mathrm{CH}, \mathrm{C}-m e n t h y l), 33.98$ $\left(\mathrm{CH}_{2}\right.$, C-menthyl), $36.06\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 42.33\left(\mathrm{CH}_{2}, \mathrm{C}-m e n t h y l\right)$, 48.12 ($\mathrm{CH}, \mathrm{C}-m e n t h y l), 51.68\left(\mathrm{CH} 2, \mathrm{C}-5^{\prime}\right), 57.11\left(\mathrm{CH}_{2}, \mathrm{C}-2^{\prime}\right)$, $65.21(\mathrm{CH}, \mathrm{C}-$ menthyl $), 83.18(\mathrm{CH}, \mathrm{PhCHMe}), 104.75(\mathrm{CH}$, $\mathrm{C}-5), 116.95(\mathrm{CH}, \mathrm{C}-3), 126.92(\mathrm{CH}, \mathrm{Ph}), 127.07(\mathrm{CH}, \mathrm{Ph})$, $128.37(\mathrm{CH}, \mathrm{Ph}), 144.85(\mathrm{C}, \mathrm{Ph}), 170.56(\mathrm{C}, \mathrm{C}-4), 170.84(\mathrm{C}$, $\mathrm{C}-2) ; m / z\left(140{ }^{\circ} \mathrm{C}\right) 412\left(\mathrm{M}^{+}+1,1 \%\right), 411\left(\mathrm{M}^{+}, 4\right), 398$ (4), 397 (27), 396 ($\mathrm{M}^{+}-\mathrm{Me}, 92$), 334 (8), 272 (21), 258 (14), 220 (3), 196 (4), 168 (9), 152 (8), 124 (6), 106 (11), 105 (100), 91 (6), 83 (12), 69 (9); m/z $\left(\mathrm{M}^{+}\right)$found 411.2773; $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{1} \mathrm{O}_{3}$ requires 411.2777.
(5S)-\{(3S)-N-[(1R)-1-Phenylethyl]pyrrolidin-3-yl\}-5-menthyloxyfuran- $2(5 \mathrm{H})$-one 12b. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 0.68-1.45 (14 H, m, H-menthyl), 1.39 ($3 \mathrm{H}, \mathrm{d}, J 6.63$, PhCHMe), 1.59-1.69 (2 H, m, H-menthyl), 2.08-2.23 (2 H, m, H-4'), 2.25-2.34 (2 H, m, H-menthyl), 2.43-2.54 (2 H, m, H-5'), 2.75-2.86 (2 H, m, H-2'), 3.02-3.13 (1 H, m, H-3'), 3.26 (q, $J 6.63$, PhCHMe), $3.50(1 \mathrm{H}, \mathrm{dt}, J 10.66 / 4.23$, H-menthyloxy), $5.74(1 \mathrm{H}, \mathrm{d}, J 0.74, \mathrm{H}-5), 5.87(1 \mathrm{H}, \mathrm{dd}, J 1.47 / 0.92, \mathrm{H}-3)$, 7.28-7.34 (5 H, m, Ph $) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $15.76\left(\mathrm{CH}_{3}\right.$, C-menthyl), $21.07\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.12\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.72\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ menthyl $), 23.02\left(\mathrm{CH}_{3}, \mathrm{PhCHMe}\right)$, 25.37 (CH, C-menthyl), $29.86\left(\mathrm{CH}_{2}, \mathrm{C}-4{ }^{\prime}\right)$, $31.67(\mathrm{CH}, \mathrm{C}-$ menthyl), $34.05\left(\mathrm{CH}_{2}, \mathrm{C}-m e n t h y l\right), 35.88\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 42.42$ $\left(\mathrm{CH}_{2}\right.$, C-menthyl), $48.17(\mathrm{CH}, \mathrm{C}-m e n t h y l), 51.98\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right)$, $56.96\left(\mathrm{CH}_{2}, \mathrm{C}-2^{\prime}\right), 65.28(\mathrm{CH}, \mathrm{C}-$ menthyl $), 83.33(\mathrm{CH}$, $\mathrm{PhCHMe}), 104.62(\mathrm{CH}, \mathrm{C}-5), 116.60(\mathrm{CH}, \mathrm{C}-3), 127.02(\mathrm{CH}$, $\mathrm{Ph}), 127.12(\mathrm{CH}, \mathrm{Ph}), 128.43(\mathrm{CH}, \mathrm{Ph}), 144.98(\mathrm{C}, \mathrm{Ph}), 170.47$ (C, C-4), 170.95 (C, C-2); IR, MS and HRMS: see ($3 R$)-isomer.
(5S)-\{(3R and $3 S)-N$-[(1S)-1-Phenylethyl]pyrrolidin-3-yl\}-5-menthyloxyfuran-2(5H)-one 11c/12c. (5S)-5-Menthyloxy-4-vinylfuran- $2(5 H)$-one $\mathbf{6}(172 \mathrm{mg}, 0.651 \mathrm{mmol})$ was treated with
(1S)- N-1-phenylethyl- N-methoxymethyl(trimethylsilylmethyl)amine $\mathbf{9 c}$ according to the general procedure for the 1,3-dipolar cycloaddition to furnish pyrrolidinylfuranones 11c and 12c after chromatography (silica gel, diethyl ether-petroleum ether $1: 2$) as yellowish viscous oils ($185 \mathrm{mg}, 0.450 \mathrm{mmol}, 69 \%$, de 41\%).
(5S)- $\{(3 R)-N-[(1 S)-1-P h e n y l e t h y l] p y r r o l i d i n-3-y l\}-$ menthyloxyfuran-2(5H)-one 11c. [al] ${ }_{20}^{D}-19.72$ (c 1.014 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2960,2928,2872,2792,1800,1756$, $1648,1492,1452,1368,1328,1236,1132,952,908 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $0.60-1.43$ ($14 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ menthyl), 1.38 ($3 \mathrm{H}, \mathrm{d}, J 6.62$, PhCHMe), 1.55-1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl), 1.84-1.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 2.00-2.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 2.04-2.33 ($3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-m e n t h y l$ and $\mathrm{H}-5^{\prime}$), 2.45 ($1 \mathrm{H}, \mathrm{dt}, J 9.01 / 6.8$, H-5'), $2.70-3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 3.02-3.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.23(1 \mathrm{H}, \mathrm{q}$, $J 6.62$, PhCHMe), 3.43 ($1 \mathrm{H}, \mathrm{dt}, J$ 10.66/4.23, H-menthyloxy), 5.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 5.88 ($1 \mathrm{H}, \mathrm{dd}, J 1.46 / 0.92, \mathrm{H}-3$), $7.20-7.37$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.45\left(\mathrm{CH}_{3}\right.$, C-menthyl), $20.96\left(\mathrm{CH}_{3}, \mathrm{C}\right.$-menthyl), $22.06\left(\mathrm{CH}_{3}\right.$, C-menthyl $)$, $22.64\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ menthyl), $22.98\left(\mathrm{CH}_{3}, \mathrm{PhCHMe}\right), 25.25(\mathrm{CH}$, C-menthyl), $28.81\left(\mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right), 31.59$ (CH, C-menthyl), 33.99 $\left(\mathrm{CH}_{2}\right.$, C-menthyl), $36.22\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 42.39\left(\mathrm{CH}_{2}, \mathrm{C}\right.$-menthyl $)$, $48.13\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 57.42\left(\mathrm{CH}_{2}, \mathrm{C}-2^{\prime}\right), 65.33(\mathrm{CH}, \mathrm{C}-m e n t h y)$), 83.26 (CH, PhCHMe), 104.75 (CH, C-5), $116.79(\mathrm{CH}, \mathrm{C}-3)$, 126.92 (CH, Ph), $127.07(\mathrm{CH}, \mathrm{Ph}), 128.41(\mathrm{CH}, \mathrm{Ph}), 144.93$ (C, $\mathrm{Ph}), 170.02(\mathrm{C}, \mathrm{C}-4), 170.82(\mathrm{C}, \mathrm{C}-2) ; \mathrm{m} / \mathrm{z}\left(120^{\circ} \mathrm{C}\right) 411\left(\mathrm{M}^{+}\right.$, 2\%), 397 (15), 396 (53), 333 (4), 272 (12), 257 (8), 2190 (25), 167 (4), 151 (4), 115 (19), 105 (10), 104 (100); $m / z\left(\mathrm{M}^{+}\right)$found 411.2773; $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{1} \mathrm{O}_{3}$ requires 411.2753 .
(5S)- $\{(3 S)-N-[(1 S)-1-P h e n y l e t h y l] p y r r o l i d i n-3-y l\}-5-$ menthyloxyfuran-2(5H)-one 12c. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 0.67-1.45 ($17 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{menthyl}$), 1.59-1.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ menthyl), 2.07-2.34 ($2+2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}+\mathrm{H}$-menthyl), $2.42-$ 2.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 2.68-2.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 3.03-3.14 (1 H , $\mathrm{m}, \mathrm{H}-3^{\prime}$), 3.20-3.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHMe}$), 3.39-3.54 ($1 \mathrm{H}, \mathrm{m}$, H-menthyloxy), $5.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.18-$ $7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ;\right.$ DEPT; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $15.63\left(\mathrm{CH}_{3}, \mathrm{C}\right.$-menthyl), $20.93\left(\mathrm{CH}_{3}\right.$, C-menthyl), $21.98\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.61\left(\mathrm{CH}_{2}, \mathrm{C}\right.$-menthyl), $22.82\left(\mathrm{CH}_{3}, \mathrm{PhCHMe}\right)$, $25.25(\mathrm{CH}, \mathrm{C}-$ menthyl $), 29.69\left(\mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right), 31.53(\mathrm{CH}, \mathrm{C}-$ menthyl), $33.91\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ menthyl), 35.58 ($\left.\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 42.28$ $\left(\mathrm{CH}_{2}\right.$, C-menthyl), $48.05(\mathrm{CH}, \mathrm{C}-$ menthyl $), 51.91\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right)$, $56.70\left(\mathrm{CH}_{2}, \mathrm{C}-2^{\prime}\right), 65.19(\mathrm{CH}, \mathrm{C}-\mathrm{menthyl}), 83.09(\mathrm{CH}, \mathrm{Ph}-$ CHMe), $104.30(\mathrm{CH}, \mathrm{C}-5), 116.12(\mathrm{CH}, \mathrm{C}-3), 126.80(\mathrm{CH}$, $\mathrm{Ph}), 127.07(\mathrm{CH}, \mathrm{Ph}), 128.34(\mathrm{CH}, \mathrm{Ph}), 144.67(\mathrm{C}, \mathrm{Ph}), 170.53$ (C, C-4), 170.77 (C, C-2); IR, MS and HRMS: see ($3 R$)-isomer.

(5S)-5-Menthyloxy-4-[(2S)-oxiran-2-yl]furan-2(5H)-one 13

(5S)-5-Menthyloxy-4-vinylfuran-2(5H)-one 6 (1.06 g, 4 $\mathrm{mmol})$ was dissolved in acetone ($1 \mathrm{~cm}^{3}$). Epoxidation was achieved by portionwise addition of a solution of dimethyldioxirane ${ }^{15}$ in acetone (ca. $0.01 \mathrm{M}, 1$ eq./portion) until complete reaction (TLC monitoring) at r.t. Then the mixture was evaporated and purified by column chromatography on silica gel (petroleum ether-diethyl ether 10:1) to give the product as white-yellowish crystals ($774 \mathrm{mg}, 2.76 \mathrm{mmol}, 69 \%$, de 71%). Recrystallization from diethyl ether-petroleum ether afforded diastereomerically pure (5S)-5-menthyloxy-4-[(2S)-oxiran-2-yl]furan-2(5H)-one $\mathbf{1 3}$ as white crystals, $\mathrm{mp} 105^{\circ} \mathrm{C}$; $[a]_{20}^{\mathrm{D}}+81.81\left(c 1.105\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2984,2920$, 2864, 1788, 1760, 1652, 1456, 1332, 1256, 1124, 988, 960, 924, 888, 856; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.78-1.13(12 \mathrm{H}, \mathrm{m}$, H-menthyl), 1.23-1.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-menthyl), $1.62-1.71(2 \mathrm{H}, \mathrm{m}$, H-menthyl), 2.08-2.20 (1 H, m, H-menthyl), 2.21-2.29 ($1 \mathrm{H}, \mathrm{m}$, H-menthyl), 3.02 (d, J 2.39) and 3.03 (d, J $2.58,1 \mathrm{H}, \mathrm{H}-3^{\prime}{ }^{\prime}$), $3.10(\mathrm{~d}, J 4.41)$ and $3.11\left(\mathrm{~d}, J 4.23,1 \mathrm{H}, \mathrm{H}-3^{\prime} \beta\right), 3.57(1 \mathrm{H}, \mathrm{dt}$, $J 10.66 / 4.41$, H-menthyloxy), 3.71 (1 H , ddd, $J 4.23 / 2.58 / 0.92$, $\left.\mathrm{H}-2^{\prime}\right), 5.87(1 \mathrm{H}, \mathrm{d}, J 1.1, \mathrm{H}-5), 6.13(1 \mathrm{H}, \mathrm{t}, J 0.92, \mathrm{H}-3) ; \delta_{\mathrm{C}}(100$ MHz; DEPT; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.72\left(\mathrm{CH}_{3}\right.$, C-menthyl), 21.05
$\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.06\left(\mathrm{CH}_{3}\right.$, C-menthyl), $22.78\left(\mathrm{CH}_{2}\right.$, C-menthyl), 25.29 (CH, C-menthyl), 31.65 (CH, C-menthyl), $33.97\left(\mathrm{CH}_{2}, \mathrm{C}\right.$-menthyl), $42.35\left(\mathrm{CH}_{2}, \mathrm{C}\right.$-menthyl), $46.65(\mathrm{CH}$, C-2'), 48.25 (CH, C-menthyl), $49.37 \mathrm{CH}_{2}, \mathrm{C}-3$ '), 82.87 (CH , C-menthyloxy), 102.75 (CH, C-5), 120.13 (CH, C-3), 163.11 (C, C-4), $169.60(\mathrm{C}, \mathrm{C}-2) ; m / z\left(60^{\circ} \mathrm{C}\right) 280\left(\mathrm{M}^{+}, 0 \%\right), 249(2), 195$ (7), 155 (4), 138 (70), $125\left(\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}, 62\right), 123$ (18), 109 (10), 97 (22), 95 (59), 84 (34), 81 (100), 69 (66), 67 (20); $m / z\left(\mathrm{M}^{+}\right)$ found 280.1675; $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$ requires 280.1659 (Found: C, 62.85; $\mathrm{H}, 3.7 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.83 ; \mathrm{H}, 3.69 \%$).

X-Ray structure determination of compound 13

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}, M=280.36$, monoclinic, space group $P 2_{1}$ (No.4), $a=8.421(2), b=6.173(1), c=15.251(2) \AA, a=90, \beta=94.28(2)$, $\gamma=90^{\circ}, V=790.6(3) \AA^{3}, Z=2, D_{\mathrm{c}} 1.178 \mathrm{~g} \mathrm{~cm}^{3}, F(000)=304$, $T=300 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.8 \mathrm{~cm}^{-1}$, crystal size $0.33 \times 1.44 \times$ 0.22 mm . Data collection: diffractometer Stoe IPDS (Imaging Plate), graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation (fine-focus sealed tube, $\lambda=0.71073 \AA$), 2θ range $=5.3-48.1^{\circ}$, scan type $=$ 150 imaging plates, $\Delta \varphi=1.5^{\circ}$, data set $h, k, l-9: 9 ;-6: 6 ;-17$: 17, total data 5638 , unique data 2371, $R_{\text {int }}=0.025$, observed data 1817 with $I>2 \sigma(I)$. Structure solution by SHELXS-86, refinement by SHELXL-93, hydrogen atoms in geometrically calculated positions, $\Delta \rho_{\text {max }}=0.07 \mathrm{e} \AA^{-3}, \Delta \rho_{\text {min }}=-0.06 \mathrm{e} \AA^{-3}, R$ $(F)=0.0268$ based on 1817 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right), w R 2=$ $0.0485, w R 2$ based on F^{2} of 2371 reflections.

Acknowledgements

We thank Janssen Research Foundation, Beerse, Belgium and the Deutsche Forschungsgemeinsschaft for their support and Ulrike Eggert for secretarial help.

References

1 E. Lattmann and H. M. R. Hoffmann, Synthesis, 1996, 155.
2 F. Fariña, M. R. Martín and M. V. Martín, An. Quim., 1978, 74, 799.
3 Q. Chen, Z. Geng and B. Huang, Tetrahedron: Asymmetry, 1995, 6, 401.

4 MM2 Energy of (5S)-5: $37.058 \mathrm{kcal} \mathrm{mol}^{\mathbf{- 1}}$, MM2 energy of its enantiomer: $39.113 \mathrm{kcal} \mathrm{mol}^{-1}$. Molecular mechanics calculations were performed using the CS Chem3D Pro software for PC, ver. 3.2 from CambridgeSoft Corporation, Cambridge, MA. Minimum RMS gradient 0.01 .
5 Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 101371.
6 I. F. Cottrell, D. Hands, D. J. Kennedy, K. J. Paul, S. H. B. Wright and K. Hoogsteen, J. Chem. Soc., Perkin Trans. 1, 1991, 1091.
7 A. Padwa and W. Dent, Org. Synth., 1989, 67, 133.
8 (a) E. Lattmann, J. Coombs and H. M. R. Hoffmann, Synthesis, 1996, 171; (b) B. L. Feringa, B. de Lange, J. F. G. A. Jansen, J. C. de Jong, M. Lubben, W. Faber and E. P. Schudde, Pure Appl. Chem., 1992, 64, 1865.
9 M. T. Rispens, E. Keller, B. de Lange, R. W. J. Zijlstra and B. L. Feringa, Tetrahedron: Asymmetry, 1994, 5, 607.
10 Z. Ma, S. Wang, C. S. Cooper, A. K. L. Fung, J. K. Lynch, F. Plagge and D. T. W. Chu, Tetrahedron: Asymmetry, 1997, 8, 883.
11 Review: S. Masamune, W. Choy, J. S. Petersen and L. R. Sita, Angew. Chem., 1985, 97, 1.
12 H. M. R. Hoffmann, K. Gerlach and E. Lattmann, Synthesis, 1996, 164.

13 G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Determinations, University of Göttingen, Germany, 1986.
14 G. M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.
15 (a) W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377; (b) W. Adam, Y.-S. Chan, D. Cremer, J. Gauss, D. Scheutzow and M. Schindler, J. Org. Chem., 1987, 52, 2800; (c) R. W. Murray, M. Singh, Org. Synth., 1997, 74, 91.

